CONVERGENCE AND CHARACTER SPECTRA OF COMPACT SPACES

lstván Juhász juhasz@renyi.hu

Alfréd Rényi Institute of Mathematics

Hejnice, February, 2010

István Juhászjuhasz@renyi.hu (Rényi Institut

3 →

- Basic definitions
- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

→ ∃ →

4 A N

Basic definitions

- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

< 🗇 🕨

< ∃ >

- Basic definitions
- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

∃ >

- Basic definitions
- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

.⊒...>

- Basic definitions
- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

.⊒...>

- Basic definitions
- Hušek's problem
- Inclusion in spectra
- Omission by spectra
- A problem on the G_{δ} -topology

$$cS(p,X) = \{|A| : A \subset X \text{ and } A \to p\}$$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(\boldsymbol{p}, \boldsymbol{X}) = \psi(\boldsymbol{p}, \boldsymbol{X}) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle \boldsymbol{x}_{\alpha} : \alpha < \kappa \rangle$ with $\boldsymbol{x}_{\alpha} \to \boldsymbol{p}$; hence $\kappa, cf(\kappa) \in cS(\boldsymbol{p}, \boldsymbol{X})$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

イロト イポト イヨト イヨ

 $cS(p,X) = \{|A| : A \subset X \text{ and } A \to p\}$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(\boldsymbol{p}, \boldsymbol{X}) = \psi(\boldsymbol{p}, \boldsymbol{X}) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle \boldsymbol{x}_{\alpha} : \alpha < \kappa \rangle$ with $\boldsymbol{x}_{\alpha} \to \boldsymbol{p}$; hence $\kappa, cf(\kappa) \in cS(\boldsymbol{p}, \boldsymbol{X})$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

< ロ > < 同 > < 三 > < 三 >

$$cS(p, X) = \{|A| : A \subset X \text{ and } A \rightarrow p\}$$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(\boldsymbol{p}, \boldsymbol{X}) = \psi(\boldsymbol{p}, \boldsymbol{X}) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle \boldsymbol{x}_{\alpha} : \alpha < \kappa \rangle$ with $\boldsymbol{x}_{\alpha} \to \boldsymbol{p}$; hence $\kappa, cf(\kappa) \in cS(\boldsymbol{p}, \boldsymbol{X})$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

$$cS(p, X) = \{|A| : A \subset X \text{ and } A \rightarrow p\}$$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(\boldsymbol{p}, \boldsymbol{X}) = \psi(\boldsymbol{p}, \boldsymbol{X}) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle \boldsymbol{x}_{\alpha} : \alpha < \kappa \rangle$ with $\boldsymbol{x}_{\alpha} \to \boldsymbol{p}$; hence $\kappa, cf(\kappa) \in cS(\boldsymbol{p}, \boldsymbol{X})$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

$$cS(p, X) = \{|A| : A \subset X \text{ and } A \rightarrow p\}$$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(p, X) = \psi(p, X) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle x_{\alpha} : \alpha < \kappa \rangle$ with $x_{\alpha} \to p$; hence $\kappa, cf(\kappa) \in cS(p, X)$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

イロト イポト イヨト イヨ

$$cS(p, X) = \{|A| : A \subset X \text{ and } A \rightarrow p\}$$

is the convergence spectrum of p in X

$$cS(X) = \cup \{ cS(x, X) : x \in X \}$$

is the convergence spectrum of X

 $\chi(p, X) = \psi(p, X) = \kappa \ge \omega \Rightarrow$ there is a 1-1 sequence $\langle x_{\alpha} : \alpha < \kappa \rangle$ with $x_{\alpha} \to p$; hence $\kappa, cf(\kappa) \in cS(p, X)$

In a compact T_2 space X, $\chi(p, X) = \psi(p, X)$ for all points $p \in X$

$$\chi S(X) = \cup \{\chi S(x, X) : x \in X\}$$

is the character spectrum of X.

If X is compact T_2 then

$$\chi(\boldsymbol{\rho}, \mathbf{Y}) = \chi(\boldsymbol{\rho}, \overline{\mathbf{Y}})$$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2 ,

 $\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X)$

$$\chi S(X) = \cup \{ \chi S(x, X) : x \in X \}$$

is the character spectrum of X.

If X is compact T_2 then

$$\chi(\boldsymbol{\rho}, \mathbf{Y}) = \chi(\boldsymbol{\rho}, \overline{\mathbf{Y}})$$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2 ,

 $\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X)$

$$\chi S(X) = \cup \{\chi S(x, X) : x \in X\}$$

is the character spectrum of X.

If X is compact T_2 then

$$\chi(\boldsymbol{\rho}, \mathbf{Y}) = \chi(\boldsymbol{\rho}, \overline{\mathbf{Y}})$$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2 ,

 $\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X)$

$$\chi S(X) = \cup \{\chi S(x, X) : x \in X\}$$

is the character spectrum of X.

If X is compact T_2 then

$$\chi(\boldsymbol{\rho}, \mathbf{Y}) = \chi(\boldsymbol{\rho}, \overline{\mathbf{Y}})$$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2 ,

 $\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X)$

$$\chi S(X) = \cup \{\chi S(x, X) : x \in X\}$$

is the character spectrum of X.

If X is compact T_2 then

$$\chi(\boldsymbol{\rho}, \mathbf{Y}) = \chi(\boldsymbol{\rho}, \overline{\mathbf{Y}})$$

for any $p \in Y \subset X$, so we may restrict to closed (i.e. compact) subspaces. This also implies:

For X compact T_2 ,

 $\chi S(p, X) \subset cS(p, X) \text{ and } \kappa \in \chi S(p, X) \Rightarrow cf(\kappa) \in cS(p, X)$

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta\omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

• • • • • • • • • • • •

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

< □ > < /i>

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset$?

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega
otin cS(eta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset$?

イロト 不得 トイヨト イヨト 二日

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

< □ > < 同 > < 臣 > < 臣 > □ = - のへで

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

◆□▶ ◆□▶ ◆ ヨ ▶ ◆ ヨ ▶ ● ○ ○ ○ ○

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?

A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

◆□▶ ◆□▶ ◆ ヨ ▶ ◆ ヨ ▶ ● ○ ○ ○ ○

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

- M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?
- A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$
- I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that ZFC $\vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset$?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

- M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?
- A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

From here on, unless otherwise stated, space (usually denoted X) is compactum \equiv infinite compact T_2 space

Note: $\omega \in cS(X) \Leftrightarrow \omega \in \chi S(X)$ and $\min cS(X) \le \min \chi S(X) \le 2^{\omega}$

Alexandrov-Urysohn (1920's) : Is $\omega \in cS(X)$?

NO! Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega)$

- M. Hušek (1970's) : Is min $cS(X) \le \omega_1$?
- A. Dow (1989) : $V^{\mathbb{C}_{\kappa}} \models \mathsf{YES}$, if $V \models \mathsf{CH}$

I. J. (1993) : $V^{\mathbb{C}_{\omega_1}} \models \min \chi S(X) \le \omega_1$, for any V

I conjecture that $ZFC \vdash \min \chi S(X) \leq \omega_1$, but don't even know if

 $\mathsf{ZFC} \vdash \chi \mathsf{S}(\mathsf{X}) \cap \mathsf{REG} \neq \emptyset !?$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

 $\{\mathbf{x}_{\alpha} : \alpha < \varrho\}$ is free in X if, for all $\alpha < \varrho$,

$$\overline{\{\mathbf{x}_{\beta}:\beta<\alpha\}}\cap\overline{\{\mathbf{x}_{\beta}:\beta\geq\alpha\}}=\emptyset$$

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length $\rho = cf(\rho) > \omega$ in X then there is one converging to some $\rho \in X$. Moreover, then

$$\chi(\boldsymbol{\rho}, \overline{\{\boldsymbol{x}_{\alpha} : \alpha < \varrho\}} = \varrho.$$

Arhangel'skii : X is countably tight iff it has no uncountable free sequences. Hence Hušek's problem is about countably tight compacta.

 $\{\mathbf{x}_{\alpha} : \alpha < \varrho\}$ is free in X if, for all $\alpha < \varrho$,

$$\overline{\{\mathbf{x}_{\beta}:\beta<\alpha\}}\cap\overline{\{\mathbf{x}_{\beta}:\beta\geq\alpha\}}=\emptyset$$

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length $\rho = cf(\rho) > \omega$ in X then there is one converging to some $\rho \in X$. Moreover, then

$$\chi(\boldsymbol{\rho}, \overline{\{\boldsymbol{x}_{\alpha} : \alpha < \varrho\}} = \varrho.$$

Arhangel'skii : X is countably tight iff it has no uncountable free sequences. Hence Hušek's problem is about countably tight compacta.

 $\{\mathbf{x}_{\alpha} : \alpha < \varrho\}$ is free in X if, for all $\alpha < \varrho$,

$$\overline{\{\mathbf{X}_{\beta}:\beta<\alpha\}}\cap\overline{\{\mathbf{X}_{\beta}:\beta\geq\alpha\}}=\emptyset$$

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length $\rho = cf(\rho) > \omega$ in X then there is one converging to some $\rho \in X$. Moreover, then

$$\chi(\boldsymbol{\rho}, \overline{\{\boldsymbol{x}_{\alpha} : \alpha < \varrho\}} = \varrho.$$

Arhangel'skii : X is countably tight iff it has no uncountable free sequences. Hence Hušek's problem is about countably tight compacta.

 $\{\mathbf{x}_{\alpha} : \alpha < \varrho\}$ is free in X if, for all $\alpha < \varrho$,

$$\overline{\{\mathbf{X}_{\beta}:\beta<\alpha\}}\cap\overline{\{\mathbf{X}_{\beta}:\beta\geq\alpha\}}=\emptyset$$

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length $\rho = cf(\rho) > \omega$ in X then there is one converging to some $\rho \in X$. Moreover, then

$$\chi(\boldsymbol{\rho}, \overline{\{\boldsymbol{x}_{\alpha} : \alpha < \varrho\}} = \varrho.$$

Arhangel'skii : X is countably tight iff it has no uncountable free sequences. Hence Hušek's problem is about countably tight compacta.

 $\{\mathbf{x}_{\alpha} : \alpha < \varrho\}$ is free in X if, for all $\alpha < \varrho$,

$$\overline{\{\mathbf{x}_{\beta}:\beta<\alpha\}}\cap\overline{\{\mathbf{x}_{\beta}:\beta\geq\alpha\}}=\emptyset$$

THEOREM. (J – Szentmiklóssy, 1991)

If there is a free sequence of length $\rho = cf(\rho) > \omega$ in X then there is one converging to some $\rho \in X$. Moreover, then

$$\chi(\boldsymbol{\rho}, \overline{\{\boldsymbol{x}_{\alpha} : \alpha < \varrho\}} = \varrho.$$

Arhangel'skii : X is countably tight iff it has no uncountable free sequences. Hence Hušek's problem is about countably tight compacta.

main lemma for inclusion

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{\leq \varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

・ロン・1日ン・1日ン・1日

main lemma for inclusion

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

 $\widehat{t}(X) = \widehat{F}(X) = \omega_1$, and $\mathcal{F}(X) = \omega_1$

main lemma for inclusion

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

 $\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

 $\widehat{t}(X) = \widehat{F}(X) = \omega_1$ (1)

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{\leq \varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \le \varrho \le cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \ge \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \ge \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \le \varrho \le cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \ge \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \ge \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \bigcup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \cup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{\leq \varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \cup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

 $\widehat{t}(X) = \widehat{F}(X) = \omega_1$, and \mathfrak{G} , we have

Non-attributed results below are joint with W. Weiss

 $\widehat{F}(X) = \min\{\kappa : \neg \exists \text{ free sequence of length } \kappa \text{ in } X\}$

MAIN LEMMA.

Let X be a T_3 space with $\widehat{F}(X) \leq \varrho \leq cf(\mu)$, moreover $p \in X$ with $\psi(p, X) \geq \mu$. Then either (i) there is a discrete $D \in [X]^{<\varrho}$ with $p \in \overline{D}$ and $\psi(p, \overline{D}) \geq \mu$, or (ii) there is a discrete $D \in [X]^{\varrho}$ such that $D \to p$.

$$\widehat{t}(X) = \min\left\{\kappa : \forall A \subset X \left(\overline{A} = \cup \{\overline{B} : B \in [A]^{<\kappa}\}\right)\right\}$$

Arhangel'skii : $\hat{t}(X) \leq \hat{F}(X) \leq \hat{t}(X)^+$ and if $\hat{t}(X)$ is regular then $\hat{t}(X) = \hat{F}(X)$. In particular, X is countably tight iff

$$\widehat{t}(X) = \widehat{F}(X) = \omega_1 \quad \text{ or } \quad$$

If $\chi(p, X) > \lambda = \lambda^{<\overline{t}(X)}$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(p, X)$.

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\sup (\kappa \cap \chi S(X)) = \kappa$.

< 🗇 🕨 🖌 🚍 🕨

If $\chi(p, X) > \lambda = \lambda^{< \hat{t}(X)}$ then $\lambda \in \chi S(p, X)$. So, if X is countably tight and $\chi(p, X) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(p, X)$

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\sup (\kappa \cap \chi S(X)) = \kappa$.

- (I) ()

If $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{< \hat{t}(\boldsymbol{X})}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$. So, if \boldsymbol{X} is countably tight and $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$.

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\sup (\kappa \cap \chi S(X)) = \kappa$.

- (I) ()

If $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{< \hat{t}(\boldsymbol{X})}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$. So, if \boldsymbol{X} is countably tight and $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$.

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\mathsf{sup}\,\left(\kappa\cap\chi\mathsf{S}(\mathsf{X})
ight)=\kappa\,.$

→ Ξ →

If $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{< \hat{t}(\boldsymbol{X})}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$. So, if \boldsymbol{X} is countably tight and $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$.

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\mathsf{sup}\,\left(\kappa\cap\chi\mathsf{S}(\mathsf{X})
ight)=\kappa\,.$

A (1) > A (1) > A

If $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{< \hat{t}(\boldsymbol{X})}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$. So, if \boldsymbol{X} is countably tight and $\chi(\boldsymbol{p}, \boldsymbol{X}) > \lambda = \lambda^{\omega}$ then $\lambda \in \chi S(\boldsymbol{p}, \boldsymbol{X})$.

COROLLARY. $\chi(X) > \mathbf{c}$ implies $\omega_1 \in \chi S(X)$ or $\{\mathbf{c}, \mathbf{c}^+\} \subset \chi S(X)$. So, if $\chi(X) > \omega$ then $\chi S(X) \cap [\omega_1, \mathbf{c}] \neq \emptyset$.

COROLLARY. If κ is strong limit and $|X| \ge \kappa$ then

 $\sup (\kappa \cap \chi S(X)) = \kappa.$

 $dcS(X) = \cup \{ dcS(x,X) : x \in X \}$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = \operatorname{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in \operatorname{dcS}(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X).$

 $dcS(X) = \cup \{ dcS(x,X) : x \in X \}$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = \operatorname{cf}(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in \operatorname{dcS}(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X).$

$$dcS(X) = \cup \{ dcS(x, X) : x \in X \}$$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = cf(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in dcS(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X).$

イロト イ団ト イヨト イヨ

$$dcS(X) = \cup \{ dcS(x, X) : x \in X \}$$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = cf(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in dcS(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X).$

< ロ > < 同 > < 三 > < 三 >

$$dcS(X) = \cup \{ dcS(x, X) : x \in X \}$$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = cf(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in dcS(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$dcS(X) = \cup \{ dcS(x, X) : x \in X \}$$

THEOREM 2.

 $\widehat{F}(X) \leq \lambda = cf(\lambda) \text{ and } \chi(p, X) \geq \sum \{(2^{\kappa})^+ : \kappa < \lambda\} \Rightarrow \lambda \in dcS(p, X).$

COROLLARY. If $\chi(X) > 2^{\kappa}$ then $\kappa^+ \in dcS(X)$.

So, $\chi(X) > \mathbf{c} \Rightarrow \omega_1 \in dcS(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta\omega) (\Leftrightarrow \omega \notin \chi S(\beta\omega));$ under CH, $\chi S(\beta\omega) = \{\omega_1\}.$

Fedorchuk (1977) : $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathrm{cf}(\lambda) = \omega_1\} \subset \mathrm{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(\mathbf{X}) \neq \{\omega_1\}$ for all \mathbf{X} .

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta\omega)(\Leftrightarrow \omega \notin \chi S(\beta\omega));$ under CH, $\chi S(\beta\omega) = \{\omega_1\}.$

Fedorchuk (1977) : $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathrm{cf}(\lambda) = \omega_1\} \subset \mathrm{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta\omega) (\Leftrightarrow \omega \notin \chi S(\beta\omega));$ under CH, $\chi S(\beta\omega) = \{\omega_1\}.$

Fedorchuk (1977) : $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) (\Leftrightarrow \omega \notin \chi S(\beta \omega));$ under CH, $\chi S(\beta \omega) = \{\omega_1\}.$

Fedorchuk (1977) : $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi S(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $cS(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(\mathbf{X}) \neq \{\omega_1\}$ for all \mathbf{X} .

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) (\Leftrightarrow \omega \notin \chi S(\beta \omega));$ under CH, $\chi S(\beta \omega) = \{\omega_1\}.$

Fedorchuk (1977): $\mathbf{s} = \omega_1$ implies $\exists X \text{ with } \chi \mathbf{S}(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $c\mathbf{S}(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(\mathbf{X}) \neq \{\omega_1\}$ for all \mathbf{X} .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) (\Leftrightarrow \omega \notin \chi S(\beta \omega));$ under CH, $\chi S(\beta \omega) = \{\omega_1\}.$

Fedorchuk (1977): $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi \mathbf{S}(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $c\mathbf{S}(X) = \{\omega_1\}$ as well. But

 $\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$

If $\mathbf{p} > \omega_1$ then $\chi S(\mathbf{X}) \neq \{\omega_1\}$ for all \mathbf{X} .

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) (\Leftrightarrow \omega \notin \chi S(\beta \omega));$ under CH, $\chi S(\beta \omega) = \{\omega_1\}.$

Fedorchuk (1977): $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi \mathbf{S}(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $c\mathbf{S}(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.

< ロ > < 同 > < 三 > < 三

э

Tychonov (1935), Čech, (1937) : $\omega \notin cS(\beta \omega) (\Leftrightarrow \omega \notin \chi S(\beta \omega));$ under CH, $\chi S(\beta \omega) = \{\omega_1\}.$

Fedorchuk (1977): $\mathbf{s} = \omega_1$ implies $\exists X$ with $\chi \mathbf{S}(X) = \{\omega_1\}$; if $2^{\omega_1} < \aleph_{\omega_1}$ then $c\mathbf{S}(X) = \{\omega_1\}$ as well. But

$$\{\lambda < 2^{\omega_1} : \mathsf{cf}(\lambda) = \omega_1\} \subset \mathsf{cS}(X).$$

If $\mathbf{p} > \omega_1$ then $\chi S(X) \neq \{\omega_1\}$ for all X.

э

10/15

Heinice 2010

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

Φ(*κ*)

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $A \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $A \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

The cardinality spectrum S(X) of any top. space Y is the set of cardinalities of all infinite closed subspaces of Y.

Lemma

Let Y be a locally compact T_2 space which is also locally μ , and let $X = Y \cup \{p\}$ be the one-point compactification of Y. If $\mu < \kappa < |Y|$ and $\kappa \notin S(Y)$ then $\kappa \notin \chi S(X)$, while $|Y| = \chi(p, X)$.

$\Phi(\kappa)$

There are $T \in [\mathbb{R}]^{\kappa}$ and $\mathcal{A} \subset [T]^{\omega}$ with $|\mathcal{A}| = \kappa$ such that (i) for every $A \in \mathcal{A}$ we have $|T \cap \overline{A}| = \kappa$ and (ii) for every $B \in [T]^{\omega_1}$ there is $A \in \mathcal{A}$ with $A \subset B$.

Theorem

$\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi \mathbf{S}(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

$\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi \mathbf{S}(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

э

$\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi S(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

 $\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi S(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

イロト イヨト イヨト イヨト

 $\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi S(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

 $\Phi(\mathbf{c})$ is (trivially) true.

COROLLARY. (Hušek, 1981) $\exists X \text{ s.t. } \chi S(X) = \{\omega, \mathbf{c}\}.$

Lemma

If $\kappa \leq \mathbf{c}$ with $cf(\kappa) \neq \omega_1$ and $\langle [\kappa]^{\omega_1}, \subset \rangle$ has a dense subfamily of size κ then $\Phi(\kappa)$ holds.

Proposition

Let λ be singular of countable cofinality s.t. $\mu^{\omega_1} < \lambda$ whenever $\mu < \lambda$. For every CCC partial order \mathbb{P} with $|\mathbb{P}| = \lambda$, $\langle [\lambda]^{\omega_1}, \subset \rangle$ has a dense subfamily of size λ in $V^{\mathbb{P}}$. (A. Miller, for $\mathbb{P} = \mathbb{C}_{\lambda}$)

Corollary

If $V \models GCH$ then, for any $\kappa > \omega$, $V^{\mathbb{C}_{\kappa}} \models \Phi(\kappa)$.

э

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in *V*. Then, in $V^{\mathbb{C}_{\lambda}}$, for every $\kappa \leq \mathbf{c}$ there is a locally countable and locally compact T_2 space *Y* with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum *X* with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathbb{C}_{\lambda}} = (V^{\mathbb{C}_{\kappa}})^{\mathbb{C}_{\lambda \setminus \kappa}}$ and the properties of Y are preserved.

Corollary

In $V^{\mathbb{C}_{\lambda}}$, for every countable set *A* of cardinals with $\omega \in A \subset [\omega, \mathbf{c}]$ there is *X* s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with **c** big that $\Phi(\kappa)$ holds for all $\kappa \leq \mathbf{c}$.

イロン イロン イヨン イヨン

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in *V*. Then, in $V^{\mathbb{C}_{\lambda}}$, for every $\kappa \leq \mathbf{c}$ there is a locally countable and locally compact T_2 space *Y* with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum *X* with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathbb{C}_{\lambda}} = (V^{\mathbb{C}_{\kappa}})^{\mathbb{C}_{\lambda \setminus \kappa}}$ and the properties of Y are preserved.

Corollary

In $V^{\mathbb{C}_{\lambda}}$, for every countable set *A* of cardinals with $\omega \in A \subset [\omega, \mathbf{c}]$ there is *X* s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with **c** big that $\Phi(\kappa)$ holds for all $\kappa \leq \mathbf{c}$.

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in *V*. Then, in $V^{\mathbb{C}_{\lambda}}$, for every $\kappa \leq \mathbf{c}$ there is a locally countable and locally compact T_2 space *Y* with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum *X* with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathbb{C}_{\lambda}} = (V^{\mathbb{C}_{\kappa}})^{\mathbb{C}_{\lambda \setminus \kappa}}$ and the properties of Y are preserved.

Corollary

In $V^{\mathbb{C}_{\lambda}}$, for every countable set *A* of cardinals with $\omega \in A \subset [\omega, \mathbf{c}]$ there is *X* s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with **c** big that $\Phi(\kappa)$ holds for all $\kappa \leq \mathbf{c}$.

< ロ > < 同 > < 回 > < 回 > <

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in *V*. Then, in $V^{\mathbb{C}_{\lambda}}$, for every $\kappa \leq \mathbf{c}$ there is a locally countable and locally compact T_2 space *Y* with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum *X* with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathbb{C}_{\lambda}} = (V^{\mathbb{C}_{\kappa}})^{\mathbb{C}_{\lambda \setminus \kappa}}$ and the properties of Y are preserved.

Corollary

In $V^{\mathbb{C}_{\lambda}}$, for every countable set *A* of cardinals with $\omega \in A \subset [\omega, \mathbf{c}]$ there is *X* s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with **c** big that $\Phi(\kappa)$ holds for all $\kappa \leq \mathbf{c}$.

イロト イヨト イヨト -

Suppose $V \models GCH$ and $\lambda > \omega$ is a cardinal in *V*. Then, in $V^{\mathbb{C}_{\lambda}}$, for every $\kappa \leq \mathbf{c}$ there is a locally countable and locally compact T_2 space *Y* with $S(Y) = \{\omega, \kappa\}$, hence there is a compactum *X* with character spectrum $\chi S(X) = \{\omega, \kappa\}$.

Proof: $V^{\mathbb{C}_{\lambda}} = (V^{\mathbb{C}_{\kappa}})^{\mathbb{C}_{\lambda \setminus \kappa}}$ and the properties of Y are preserved.

Corollary

In $V^{\mathbb{C}_{\lambda}}$, for every countable set *A* of cardinals with $\omega \in A \subset [\omega, \mathbf{c}]$ there is *X* s.t. $\chi S(X) = A$.

Theorem (L. Soukup)

It is consistent with **c** big that $\Phi(\kappa)$ holds for all $\kappa \leq \mathbf{c}$.

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

 $cS(X) = [\omega, |X|]$.

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

 $\chi \mathbf{S}(\mathbf{X}) = \mathbf{c}\mathbf{S}(\mathbf{X}) = \{\omega, \omega_2\}.$

This is the only known example whose convergence spectrum is not convex on REG!

・ 同 ト ・ ヨ ト ・ ヨ

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

 $\mathbf{cS}(\mathbf{X}) = [\omega, |\mathbf{X}|].$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

 $\chi \mathbf{S}(\mathbf{X}) = \mathbf{c}\mathbf{S}(\mathbf{X}) = \{\omega, \omega_2\}.$

This is the only known example whose convergence spectrum is not convex on REG!

・ 同 ト ・ ヨ ト ・ ヨ

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

 $\mathbf{cS}(\mathbf{X}) = [\omega, |\mathbf{X}|].$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the only known example whose convergence spectrum is not convex on REG!

Each example X so far is the one-point compactification of a locally countable (loc. cpt) space, hence satisfies

 $\mathsf{cS}(\mathsf{X}) = [\omega, |\mathsf{X}|].$

Theorem (J-Koszmider-Soukup, 2009)

Consistently, there is X s.t.

$$\chi S(X) = cS(X) = \{\omega, \omega_2\}.$$

This is the only known example whose convergence spectrum is not convex on REG!

Any crowded *X* has a crowded, hence non-discrete countable subspace.

PROBLEM.

If $\chi(p, X) > \omega$ for all $p \in X$, does X_{δ} have a non-discrete subspace of size ω_1 ?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.

Any crowded *X* has a crowded, hence non-discrete countable subspace.

PROBLEM.

If $\chi(p, X) > \omega$ for all $p \in X$, does X_{δ} have a non-discrete subspace of size ω_1 ?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.

Any crowded *X* has a crowded, hence non-discrete countable subspace.

PROBLEM.

If $\chi(p, X) > \omega$ for all $p \in X$, does X_{δ} have a non-discrete subspace of size ω_1 ?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.

• • • • • • • • • • • • •

Any crowded *X* has a crowded, hence non-discrete countable subspace.

PROBLEM.

If $\chi(p, X) > \omega$ for all $p \in X$, does X_{δ} have a non-discrete subspace of size ω_1 ?

YES, if $\omega_1 \in cS(X)$, hence YES if X is not countably tight.

YES for all X, if my old conjecture holds.

< □ > < □ > < □ > < □ >